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Abstract This paper presents a complete, choice-based, axiomatic Bayesian 
decision theory. It introduces a new choice set consisting of information-contingent 
plans for choosing actions and bets and subjective expected utility model with effect-
dependent utility functions and action-dependent subjective probabilities which, in 
conjunction with the updating of the probabilities using Bayes’ rule, gives rise to a 
unique prior and a set of action-dependent posterior probabilities representing the 
decision maker’s prior and posterior beliefs. 
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1 Introduction 

Bayesian decision theory is based on the notion that a decision-maker’s choice among 
alternative courses of action reflects his tastes for the ultimate outcomes, or payoffs, 
as well as his beliefs regarding the likelihoods of the events in which these payoffs 
materialize. The decision maker’s beliefs, both prior and posterior, are supposed to be 
measurable cognitive phenomena quantifiable by probabilities. The essential tenets of 
Bayesian decision theory are two: (a) new information affects the decision maker’s 
preferences, or choice behavior, through its effect on his beliefs rather than his tastes, 
and (b) the posterior probabilities, representing the decision maker’s posterior beliefs, 
are obtained by the updating the prior probabilities, representing his prior beliefs, 
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126 E. Karni 

using Bayes’ rule. The critical aspect of Bayesian decision theory is, therefore, the 
existence and uniqueness of subjective probabilities, prior and posterior, representing 
the decision maker’s prior and posterior beliefs that abide by Bayes rule. 

In the wake of the seminal work of Savage (1954), it is commonplace to depict the 
alternatives in the choice set as mappings from a state space, whose elements repre-
sent resolutions of uncertainty, to a set of consequences. The objects of choice have 
the interpretation of alternative courses of action and are referred to as acts. Much 
of the theory of choice consists of axiomatic models of preference relations on sets 
of acts whose representations involve unique subjective probabilities, interpreted as 
the Bayesian prior.1 The uniqueness of the probabilities in these works is due to the 
use of a convention maintaining that constant acts are constant-utility acts. Lacking 
choice-theoretic foundations (i.e., it is not refutable in the context of the revealed-
preference methodology), the use of this convention renders the prior probabilities in 
these models a theoretical construct that, while convenient, has no behavioral meaning. 
Moreover, not only does Savage’s model accommodates alternative priors and corre-
sponding (state-dependent) utility functions, the stricture that the posterior preferences 
be obtained from the prior preference by updating the prior probabilities according 
to Bayes rule, leaving the utility function intact, has no bite. Consequently, for the 
purpose of Bayesian updating of rankings of acts, the issue of uniqueness of the prob-
abilities has no empirical relevance. However, form the point of view of Bayesian 
statistics, the non-uniqueness of the prior is a fundamental flaw. Note, in particular, 
that rather than choosing state-independent utility function, it is possible normalize 
the utilities so that the prior be uniform. Hence, every Bayesian analysis may always 
start from a uniform prior regardless of the decision maker’s beliefs. 

In this paper, I propose an alternative analytical framework and a behavioral model 
that characterizes a subjective expected utility representation of the decision-maker’s 
preferences, involving a unique family of action-dependent priors on effects, and cor-
responding families of action-dependent posteriors. In addition, the utility functions 
that figure in the representation may be effect-dependent, the significance of which 
is discussed below. This work extends the analytical framework of Karni (2006) by  
including, in addition to actions, effects, and bets, observations, and strategies. Actions 
are initiatives by which decision makers believe they can affect the likely realization of 
effects. Effects are observable realizations of eventualities on which decision makers 
can place bets, and which might also be of direct concern to them. Bets are real-valued 
mapping on the set of effects. Observations correspond to informative signals that the 
decision maker may receive before choosing his action and bet. Strategies are maps 
from the set of observations to the set of action-bet pairs. In this model, decision 
makers are characterized by preference relations on the set of all strategies whose 
axiomatic structure lends the notion of constant utility bets choice-theoretic meaning. 
In this model it possible to define a unique family of action-dependent, joint subjective 
probability distributions on the product set of effects and observations. Moreover, the 
prior probabilities are the unconditional marginal probabilities on the set of effects 

1 Prominent among these theories are the subjective expected utility models of Savage (1954), Anscombe 
and Aumann (1963), and Wakker (1989), and the probability sophisticated choice models of Machina and 
Schmeidler (1992, 1995). 
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and the posterior probabilities are the distributions on the effects conditional on the 
observations. Finally, most importantly, these prior and posterior probabilities are 
the only representations of the decision maker’s prior and posterior beliefs that are 
consistent with the tenets of Bayesian decision model mentioned above. 

This issue here is not purely theoretical. Karni (2008b) gives an example involv-
ing the design of optimal insurance in the presence of moral hazard, in which the 
insurer knows the insured’s prior preferences and assumes, correctly, that the insured 
is Bayesian. The example shows that, failure to ascribe to the insured his true prior 
probabilities and utilities may result in attributing to him the wrong posterior prefer-
ences. In such case, when new information (for instance, a study indicating a decline 
in the incidence of theft in the neighborhood in which the insured resides) necessi-
tates changing the terms of the insurance policy, the insurer may offer the insured a 
policy that is individually rational and incentive incompatible. More generally, in the 
presence of moral hazard, correct prediction of an agent’s changing behavior by the 
application of Bayes rule requires that the agent be ascribed a prior that faithfully 
represents his beliefs. A more meaningful notion of subjective probability, one that 
is a measurement of subjective beliefs when these beliefs have structure that allows 
their representation by probability measure, is developed in this paper. 

As indicated above, this paper extends that of Karni (2006) by including two new 
ingredients, namely, observations and strategies, that, together with the actions, make 
it possible to identify constant utility bets. The latter are essential for a choice-based 
definition of Bayesian priors that do not relay on arbitrary normalization of the utility 
function. More specifically, Karni (2006) introduced the notion of constant valuation 
bets. Unlike constant-utility bets, constant-valuation bets are defined using compen-
sating variations between the direct utility cost associated with the actions and their 
impact on the probabilities of the effects. The uniqueness of the probability in Karni 
(2006), must still rely on an arbitrary normalization of the utility functions. Providing 
a choice-based definition of constant utility bets and, thereby, ridding the model of the 
need for an arbitrary normalization of the utility functions, is one the main aspects of 
this paper. In addition, in Karni (2006) the direct utility impact of the actions enters the 
representation through action-dependent transformations of the expected-utility func-
tionals. By contrast, in the present model of these transformations appear as additive 
terms thus rendering the representation simpler and consistent with the modeling of 
agents’ actions in the literature on incentive contracts. 

The model presented here accommodates effect-dependent preferences, lending 
itself to natural interpretations in the context of medical decision making and the 
analysis of life insurance, health insurance, as well as standard portfolio and property 
insurance problems. The fact that the probabilities are action dependent means that the 
model furnishes an axiomatic foundation for the behavior of the principal and agent 
depicted in the parametrized distribution formulation of agency theory introduced by 
Mirrlees (1974, 1976).2 

2 The axiomatic foundations of agency theory was first explored in Karni (2008a). That study invoked the 
analytical framework developed in Karni (2007), in which the choice set consists of action-bet pairs and the 
payoffs of the bets are lotteries. That framework included neither observations nor strategies. Consequently, 
the notion of constant utility bets, which is central to the present work, was impossible to define. Instead, 
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The pioneering attempt to extend the subjective expected utility model to include 
moral hazard and state-dependent preferences is due to Drèze (1961, 1987). Invoking 
the analytical framework of Anscombe and Aumann (1963), he departed from their 
“reversal of order” axiom, assuming instead that decision makers may strictly prefer 
knowing the outcome of a lottery before the state of nature becomes known. Accord-
ing to Drèze, this suggests that the decision maker believes that he can influence the 
probabilities of the states. How this influence is produced is not made explicit. The 
representation entails the maximization of subjective expected utility over a convex 
set of subjective probability measures.3 

The next section introduces the theory and the main results. Concluding remarks 
appear in Sect. 3. The proof of the main representation theorem appears in Sect. 4. 

2 The theory 

2.1 The analytical framework 

Let be a finite set of effects, X a finite set of observations or signals, and A a con-
nected separable topological space whose elements are referred to as actions. Actions 
correspond to initiatives (e.g., time and effort) that decision makers may take to influ-
ence the likely realization of effects. 

A bet is a real-valued mapping on interpreted as monetary payoffs contingent on 
the realization of the effects. Let B denote the set of all bets on and assume that it 
is endowed with the R| | topology. Denote by (b−θ r) the bet obtained from b ∈ B by 
replacing the θ coordinate of b (that is, b (θ)) with r. Effects are analogous to Savage 
(1954) states in the sense that they resolve the uncertainty associated with the payoff 
of the bets. Unlike states, however, the likely realization of effects may conceivably 
be affected by the decision maker’s actions.4 

Observations may be obtained before the choice of bets and actions, in which case 
they affect these choices. For example, upon learning the result of a new study con-
cerning the effect of cholesterol level in blood on the likelihood of a heart attack, 
a decision maker may adopt an exercise and diet regimen to reduce the risk of heart 
attack and, at the same time, take out health insurance and life insurance policies. In 
this instance the new findings correspond to observations, the diet and exercise regi-
men correspond to actions, the states of health are effects, and the financial terms of 
an insurance policy constitute a bet on .5 

Footnote 2 continued 
constant valuation bets in conjunction with an arbitrary normalization of the utility functions were used 
together to pin down action dependent subjective probabilities and outcome-dependent utilities of money. 
3 The model in this paper differs from that of Drèze in several important respects, including the specification 
of the means by which a decision maker thinks he may influence the likelihood of the alternative effects. 
For more details see Karni (2006). 
4 It is sufficient, for my purpose, that the decision maker believes that he may affect the likely realization 
of the effects by his choice of action. 
5 Clearly, the information afforded by the new observation is conditioned by the existing regimen. The 
decision problem is how to modify the existing regimen in light of the new information. 
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129 A theory of Bayesian decision making 

To model this “dynamic” aspect of the decision making process, I assume that a 
decision maker formulates a strategy, or contingent plan, specifying the action-bet pairs 
to be implemented contingent on the observations. Formally, denote by o the event “no 
new information” and let X̄ = X ∪ {o}, then a strategy is a function I : X̄ → A × B 
that has the interpretation of a set of instructions specifying, for each x ∈ X̄ , an 
action-bet pair to be implemented if x is observed.6 Let I be the set of all strategies. 

A decision maker is characterized by a preference relation on I. The strict 
preference relation, , and the indifference relation,  , are the asymmetric and sym-
metric parts of , respectively. Denote by I−x (a, b) ∈ I the strategy in which the x 
coordinate of I is replaced by (a, b) . An observation, x, is essential if I−x (a, b) � � � � 
I−x a , b for some (a, b) , a , b ∈ A × B and I ∈ I. I assume throughout that all 
elements of X̄ are essential. 

In the terminology of Savage (1954), X may be interpreted as a set of states and¯ 
contingent plans as acts. However, because the decision maker’s beliefs about the like-
lihoods of the effects depend on both the actions and the observations, the preferences 
on action-bet pairs are inherently observation dependent. Thus applying Savage’s 
state-independent axioms, P3 and P4, to on I, makes no sense. 

To grasp the role of the various ingredients of the model and set the stage for the 
statement of the axioms, it is useful, at this junction, to look ahead at the representation 
of on I. The representation involves an array of continuous, effect-dependent utility 
functions {u (·, θ) : R → R}θ∈ and a utility of actions function v : A → R unique 
up to common positive linear transformation, and a unique family of action-dependent 
joint probability measures, {π (·, · | a)}a∈A on X̄ × such that on I is represented 
by 

� � � � � � � � �� 
I → π x, θ  | aI (x) u bI (x) (θ), θ  + v aI (x) , (1) 

x∈X̄ θ∈ 

where bI (x) and aI (x) are the bet and action assigned by the strategy I to the observa-� 
tion x . Furthermore, for all x ∈ X̄ , μ (x) := π (x, θ  | a) is independent of a.θ∈ 
Hence the representation (1) may be written as 

� 
� � � � � � � � 

I → μ (x) π θ | x, aI (x) u bI (x) (θ), θ  + v aI (x) , (2) 
x∈X̄ θ∈ 

where, for all x ∈ X , π (θ | x, a) = π (x, θ  | a) /μ (x) is the posterior probability of θ �1conditional on x and a, and for each a ∈ A, π (θ | o, a) = x∈X π (x, θ  | a) is1−μ(o) 

the prior probability of θ conditional a.7 

6 Alternatively stated, o is a non-informative observation (that is, anticipating the representation below, 
the subjective probability distribution on the effects conditional on o is the same as that under the current 
information). 
7 Describing π (· | o, a) as the prior distribution is appropriate because conditioning on o is means that 
not information is obtained before a decision is taken. 
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In either representation the choice of strategy entails evaluation of the bets by their 
expected utility. Actions enter this representation as a direct source of (dis)utility as 
well as an instrument by which the decision maker believes he may affect the likely 
realizations of the effects. 

2.2 Axioms and additive representation of on I 

The first axiom is standard: 

(A.1) (Weak order) is a complete and transitive binary relation. 

A topology on I is needed to define continuity of the preference relation . Recall 
¯ that I = (A × B)X and let I be endowed with the product topology.8 

(A.2) (Continuity) For all I ∈ I, the sets {I ∈ I | I I } and {I ∈ I | I I }
are closed. 

The next axiom, coordinate independence, is analogous to but weaker than Savage 
(1954) sure thing principle.9 

� � 
(A.3) (Coordinate independence) For all x ∈ X̄ , I, I ∈ I, and (a, b), a , b ∈ � � � � 

A × B, I−x (a, b) I−x (a, b) if and only if I−x a , b I−x a , b . 

An array of real-valued functions (vs)s∈S is said to be a jointly cardinal addi-
tive representation for a binary relation on a product set D = s∈S Ds if, for all � � � � 
d, d ∈ D, d d if and only if s∈S vs (ds ) ≥ d , and the class of all s∈S vs s 
functions that constitute an additive representation of consists of those arrays of � � 
functions, v̂s s∈S , for which v̂s = ηvs +  s , η >  0 for all s ∈ S. The representation 
is continuous if the functions vs , s ∈ S are continuous. 

The following theorem is an application of Theorem III.4.1 in Wakker (1989)10: 

Theorem 1 Let I be endowed with the product topology and | X̄ |≥ 3. Then a pref-
erence relation on I satisfies (A.1)–(A.3) if and only if there exist an array of 
real-valued functions {w (·, ·, x) | x ∈ X} on A × B that constitute a jointly cardinal, ¯ 
continuous, additive representation for . 

2.3 Independent betting preferences 

¯For every given x ∈ X , denote by x the induced preference relation on A× B defined � � � � 
xby (a, b) a , b if and only if I−x (a, b) I−x a , b . The induced strict pref-

xerence relation, denoted by , and the induced indifference relation, denoted by  x , 
xare the asymmetric and symmetric parts of , respectively.11 The induced prefer-

ence relation o is referred to as the prior preference relation; the preference relations 

8 That is, the topology on I is the product topology on the Cartesian product (A × B)|X̄ | . 
9 See Wakker (1989) for details. 
10 To simplify the exposition I state the theorem for the case in which X̄ contains at least three essential 
coordinates. Additive representation when there are only two essential coordinates requires the imposition 
of the hexagon condition (see Wakker 1989 theorem III.4.1). 
11 For preference relations satisfying (A.1)–(A.3), these relations are well-defined. 
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131 A theory of Bayesian decision making 

x , x ∈ X, are the posterior preference relations. For each a ∈ A the preference 
xrelation induces a conditional preference relation on B defined as follows: for all � � 

x xb, b ∈ B, b b if and only if (a, b) a, b . The asymmetric and symmetric a 
x xpart of are denoted by and  a

x , respectively. a a 
An effect, θ,  is said to be nonnull given the observation–action pair (x, a) if � � 

x(b−θr) b−θr , for some b ∈ B and r, r ∈ R; it is null given the observation-a 
action pair (x, a) otherwise. Given a preference relation, , denote by (a, x) the 
subset of effects that are nonnull given the observation–action pair (x, a). Assume 
that (a, o) = �, for all a ∈ A. 

Two effects, θ and θ , are said to be  elementarily linked if there are actions a, a ∈ A � �¯and observations x, x ∈ X such that θ, θ  ∈ (a, x) ∩ a , x . Two effects are 
said to be linked if there exists a sequence of effects θ = θ0, . . . , θn = θ such that θ j 

and θ j+1 are elementarily linked, j = 0, . . . , n − 1. The set of effects, �, is linked if 
every pair of its elements is linked. 

The next axiom requires that the “intensity of preferences” for monetary payoffs 
contingent on any given effect be independent of the action and the observation: 

� � 
(A.4) (Independent betting preferences) For all (a, x) , a , x ∈ A× X̄ , b, b , b , � � 

xb ∈ B, θ  ∈ (a, x) ∩ a , x , and r, r , r , r ∈ R, if  (b−θr) a � � � � � � � � � � � � 
x x xb−θr , b−θr b−θr , and b−θr b−θr then b−θr � � a a a 

b−θr . 

To grasp the meaning of independent betting preferences, think of the preferences 
x x(b−θ , r) (b−θ , r ) and (b−θ , r ) (b−θ , r ) as indicating that given the action a a 

a, the observation x, and the effect θ, the intensity of the preferences of r over r 
is sufficiently larger than that of r over r as to reverse the preference ordering of the 
effect-contingent payoffs b−θ and b−θ . The axiom requires that these intensities not 
be contradicted when the action is a instead of a and the observation is x instead 
of x . 

The idea may be easier to grasp by considering a specific instance in which (b−θ , r) 
 x )  x r ) and (b−θr )  x r). The first pair of indiffer-a (b−θ , r ), (b−θr a (b−θ a (b−θ 
ences indicates that, given a and x, the difference in the payoffs b and b contingent 
on the effects other than θ measures the intensity of preferences between the payoffs r � � � � 
and r and between r and r , contingent on θ. The indifference b−θr  x b−θr a 
then indicates that given another action–observation pair, a and x , the intensity of 
preferences between the payoffs r and r contingent on θ is measured by the differ-
ence in the payoffs the bets b and b contingent on the effects other than θ.  The 
axiom requires that, in this case, the difference in the payoffs b and b contingent 
on the effects other than θ is also a measure of the intensity of the payoffs r and 
r contingent on θ. Thus the intensity of preferences between two payoffs given θ is 
independent of the actions and the observations. 

2.4 Belief consistency 

To link the decision maker’s prior and posterior probabilities, the next axiom asserts 
that for every a ∈ A and θ ∈ �, the prior probability of θ given a is the sum over X 
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of the joint probability distribution on X × conditional on θ and a (that is, the prior 
is the marginal probability on ). 

Let I −o (a, b) denote the strategy that assigns the action–bet pair (a, b) to every 
observation other than o (that is, I −o (a, b) is a strategy such that I (x) = (a, b) for 
all x ∈ X). 

(A.5) (Belief consistency) For every a ∈ A, I ∈ I and b, b ∈ B, I−o (a, b)   � � � � 
oI−o a, b if and only if I −o (a, b)  I − a, b . 

The interpretation of Axiom (A.5) is as follows. The decision maker is indiffer-
ent between two strategies that agree on X and, in the event that no new information 
becomes available, call for the implementation of the alternative action–bet pairs (a, b) � � 
or a, b if and only if he is indifferent between two strategies that agree on o and � � 
call for the implementation of the same action–bet pairs (a, b) or a, b regardless of 
the observation. Put differently, given any action, the preferences on bets conditional 
on there being no new information is the same as that when new information may not 
be used to select the bet. Hence, in and of itself, information is worthless. 

2.5 Constant utility bets 

Constant utility bets are bets whose payoffs offset the direct impact of the effects. 
Formally 

Definition 2 A bet b̄ ∈ B is a constant utility bet according to if, for all I, I , I , I � � � � � �¯ ¯ ¯ ¯∈ I, a, a , a , a ∈ A and x, x ∈ X , I−x a, b   I−x a , b , I−x a , b   � � � � � � � � � �¯ ¯ ¯ ¯ ¯I−x a , b and I− a, b   I−x a , b imply I− a , b   I−x a , b and x x 
x ¯∩(x,a)∈X×A{b ∈ B | b   b} = {b̄}.a 

¯To render the definition meaningful it is assumed that, given b, for all a, a , 
a , a ∈ A and x, x ∈ X̄ there are I, I , I , I ∈ I such that the indifferences � � � � � � � � � � � �¯ ¯I− a, b̄   I− a , b̄ , I− a , b̄   I− a , b and I− a, b̄ a , bx x x x x   I−x 
hold. 

As in the interpretation of axiom (A.4), to understand the definition of constant � � � �¯ ¯utility bets it is useful to think of the preferences I−x a, b a , b and  I−x � � � �¯ ¯ ¯ 
ference between the substrategies I−x and I− measure the intensity of preference of 
I−x a , b   I−x a , b as indicating that, given b and x, the preferential dif-

x � � � �¯ ¯ a over a and that of a over a . The indifference I− a, b  I− a , b impliesx x 
that, given b̄ , and another observation x , the preferential difference between the sub-
strategies I− and I− is another measure the intensity of preference of a over a . x x 
Then it must be true that it also measure the intensity of preference of a over a . 

x ¯The requirement that ∩(x,a)∈X×A{b ∈ B | b   b} = {b̄} implicitly asserts that a 
actions and observations affect the probabilities of the effects, and that these actions 
and observations are sufficiently rich so that b̄ is well-defined. It is worth emphasizing 
that the axiomatic structure does not rule out that the decision maker believes that his 
choice of action does not affect the likelihoods of the effects. However, the uniqueness 
part of Definition 2, by excluding the existence of distinct constant utility bets belong-
ing to the same equivalence classes, for all (a, x) ∈ A × X, implies that, not only does 
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133 A theory of Bayesian decision making 

the decision maker believe in his ability to affect the likely realization of the effects 
by his choice of action, but also that these likelihoods depend on the observations. 

To understand why this implies that b̄ is a constant utility bet recall that, in general, 
actions affect decision makers in two ways: directly through their utility cost and indi-
rectly by altering the probabilities of the effects. Moreover, only the indirect impact 
depends on the observations. The definition requires that, given b̄ , the intensity of the 
preferences over the actions be observation-independent. This means that the indirect 
influence of the actions is neutralized, which can happen only if the utility associated 
with b̄ is invariable across the effects. 

Let Bcu ( ) be a subset of all constant utility bets according to . In general, this 
set may be empty. This is the case if the range of the utility of the monetary payoffs 
across effects do not overlap. Here I am concerned with the case in which Bcu ( ) 
is nonempty. The set Bcu ( ) is said to be inclusive if for every (x, a) ∈ X × A and 

x 12¯b ∈ B there is b̄ ∈ Bcu ( ) such that b   b.a 
The next axiom requires that the trade-offs between the actions and the substrategies 

that figure in Definition 2 are independent of the constant utility bets. 
¯(A.6) (Trade-off independence) For all I, I ∈ I, x ∈ X̄ , a, a ∈ A and b̄ , b ∈ � � � � � � � � 

Bcu ( ) , I−x a, b̄ I− a , b̄ if and only if I−x a, b̄ I− a , b̄ .x x 

Finally, it is also required that the direct effect (that is, cost) of actions, measured 
by the preferential difference between b̄ and b̄ in Bcu ( ), be independent of the 
observation. 

b̄ ∈ Bcu ( ), x, x ∈ ¯(A.7) (Conditional monotonicity) For all b̄ , X , and a, a ∈ A, � � � � � � � � 
x x¯ ¯ a, b a , b̄ if and only if a, b a , b̄ . 

2.6 The main representation theorem 

The next theorem asserts the existence of subjective expected utility representation 
of the preference relation on I, and characterizes the uniqueness properties of its � � 
constituent utilities and the probabilities. For each I ∈ I let aI (x), bI (x) denote the � � 
action-bet pair corresponding to the x coordinate of I , i.e., I (x) = aI (x), bI (x) . 

Theorem 3 Let be a preference relation on I and suppose that Bcu ( ) is inclusive, 
then: 

(a) The following two conditions are equivalent: 
(a.i) satisfies (A.1)–(A.7) 
(a.ii) there exist continuous, real-valued functions {u (·, θ) | θ ∈ } on R , 
v ∈ R A , and a family, {π (·, · | a) | a ∈ A}, of joint probability measures on 
X̄ × such that on I is represented by 

� 
� � � � � � � � 

I → μ (x) π θ | x, aI (x) u bI (x) (θ) , θ  + v aI (x) , (3) 
x∈X̄ θ∈ 

12 Inclusiveness of Bcu ( ) simplifies the exposition. For existence and uniqueness of the probabilities in 
the main result below it is enough that for every given x and a, Bcu ( ) contains at least two bets. 
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� 
where μ (x)= π (x, θ  | a) for all x ∈ ¯ =X is independent of a, π (θ | x, a)θ∈ � � � � � �1π x, θ  | a /μ (x) for all (x, a) ∈ X̄ × A, π  θ | o, a = 1−μ(o) x∈X π x, 

� � � � �¯ 
θ ∈ . 
θ | a for all a ∈ A, and, for every b̄ ∈ Bcu ( ), u b (θ) , θ  = u b̄ , for all 

(b) If {û (·, θ) | θ ∈ }, v̂ ∈ R A and {π̂ (·, · | a) | a ∈ A} is another set of utilities 
and a family of joint probability measures representing in the sense of (3), then 
π̂ (·, · | a) = π (·, · | a) for every a ∈ A and there are numbers m > 0 and k, k 
such that û (·, θ) = mû (·, θ)+ k , θ  ∈ and v̂ = mv + k . 

Although the joint probability distributions π (·, · | a) , a ∈ A depend on the 
actions, the distribution μ is independent of a. This is consistent with the formu-
lation of the decision problem according to which the choice of actions is contingent 
on the observations. In other words, if new information in the form of an observation 
becomes available, it precedes the choice of action. Consequently, the dependence of 
the joint probability distributions π (·, · | a) on a captures solely the decision maker’s 
beliefs about his ability to influence the likelihood of the effects by his choice of 
action.13 

The key to obtaining the uniqueness of the joint probability distributions π (·, · | a) , 
a ∈ A is the existence and uniqueness of constant utility bets. The definition of these 
bets requires, in turn, that the decision maker perceives the likelihoods of the effects 
to depends on both his actions and the observations. It is worth underscoring that, 
neither actions nor observations can be dispense with and still obtain a choice-based 
definition of constant utility bets. 

Unlike the subjective probability in the theory of Savage (1954) (and in all other 
theories that invoke Savage’s analytical framework) whose uniqueness is predicated 
on an arbitrary specification of the utility function, the uniqueness of the probabilities 
in this theory is entirely choice based. In particular, the theory of this paper is immune 
to the critique of Savage’s theory in the introduction. 

3 Concluding remarks 

3.1 Effect-independent preferences and effect-independent utility functions 

The choice-based Bayesian decision theory presented in this paper includes, as a spe-
cial case, effect-independent preferences. In particular, following Karni (2006), effect 
independent preferences is captured by the following axiom: 

(A.8) Effect-independent betting preferences For all x ∈ X̄ , a ∈ A, b, b , b , 
x xb ∈ B, θ, θ  ∈ �, and r, r , r r ∈R, if (b−θ , r) (b−θ , r ), (b−θ , r )a a 

x x(b−θ , r ), and (b−θ
, r ) (b− , r) then (b−θ

, r ) a (b− , r ).a θ θ 

13 If an action-effect pair are already “in effect” when new information arrives, they constitute a default 
course of action. In such instance, the interpretation of the decision at hand is possible choice of new action 
and bet. For example, a modification of a diet regimen coupled with a possible change of life insurance 
policy. 
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135 A theory of Bayesian decision making 

The interpretation of this axiom is analogous to that of action-independent bet-
x xting preferences. The preferences (b−θ , r ) (b−θ , r) and (b−θ , r ) (b−θ , r )a a 

indicate that, for every given (a, x), the “intensity” of the preference for r over r 
given the effect θ is sufficiently greater than that of r over r as to reverse the order of 
preference between the payoffs b−θ and b−θ . Effect independence requires that these 
intensities not be contradicted by the preferences between the same payoffs given any 
other effect θ.  

Adding axiom (A.8) to the hypothesis of Theorem 3 implies that the utility func-
tion that figures in the representation takes the form u (b (θ) , θ) = t (θ) u (b (θ)) + 
s (θ) , where t (θ) > 0. In other words, even if the preference relation exhibits effect-
independence over bets, the utility function may still display effect dependence, in 
the form of the additive and multiplicative coefficient. Thus, effects may impact the 
decision maker’s well-being without necessarily affecting his risk preferences. 

Let Bc be the subset of constant bets (that is, trivial bets with the same payoff 
regardless of the effect that obtains). If the set of constant utility bets coincides with 

Bcu (the set of constant bets (that is, Bc = )), then the utility function is effect inde-
pendent (that is, u (b (θ) , θ) = u (b (θ)) for all θ ∈ �). The implicit assumption that 
the set of constant utility bets coincides with the set of constant bets is the convention 
invoked by the standard subjective utility models. Unlike in those models, however, 
in the theory of this paper, this assumption is a testable hypothesis. 

3.2 Conditional preferences and dynamic consistency 

The specification of the decision problem implies that, before the decision maker 
chooses an action-bet pair, either no informative signal arrives (that is, the observation 
is o) or new informative signal arrives in the form of an observation x ∈ X. One way or 
another, given the information at his disposal, the decision maker must choose among � � ˆ xaction-bet pairs. Let be binary relations on A × B depicting the decision x∈X̄ � � ˆ xmaker’s choice behavior conditional on observing x . I refer to by the name x∈X̄ 
ex-post preference relations. 

Dynamic consistency requires that at each x ∈ X , the decision maker implements ¯ 
his plan of action envisioned for that contingency by the original strategy. Formally, 

Definition 4 A preference relation on I is dynamically consistent with the ex-post � � ˆ x x )preference relations X on A × B if the posterior preference relations ( x∈ ¯ x∈ ¯ X 
x ˆ xsatisfy = for all x ∈ X̄ . 

The following is an immediate implication of Theorem 3. 

Corollary 5 Let be preference relation on I satisfying (A.1)–(A.7) and suppose 
that Bcu ( ) is inclusive. Then is dynamically consistent with the ex-post preference � � 
relations ˆ x 

X on A × B if and only if, for all x ∈ X̄ , ˆ x is represented by x∈ ¯ 

� 
(a, b) → π (θ | x, a) u (b (θ), θ) + v (a), (4) 

θ∈ 
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136 E. Karni 

where {u (·, θ) | θ ∈ } and {π (· | x, a) | x ∈ X̄ , a ∈ A} are the utility functions 
and conditional subjective probabilities that appear in the representation (3). 

For every a ∈ A the subjective action-contingent prior on is π (· | o, a) and the 
subjective action-contingent posteriors on are π (· | x, a) , x ∈ X. The subjective 
action-dependent prior is the marginal distribution on induced by the distribution on 
X × �, and the subjective action-dependent posteriors are obtained from the action-
contingent joint distribution on X × by conditioning on the observation. 

4 Proof of Theorem 3 

For expository convenience, I write Bcu instead of Bcu ( ) . 

(a) (a.i) ⇒ (a.i i) . Suppose that on I satisfies (A.1)–(A.7) and Bcu is inclusive. 
By Theorem 1, is represented by 

� � � 
I → w aI (x), bI (x), x . (5) 

x∈X̄ 

where w (., ., x), x ∈ X̄ are jointly cardinal, continuous, real-valued functions. 
xSince satisfies (A.4), Lemmas 4 and 5 in Karni (2006) applied to , x ∈ X̄ , 

and Theorem III.4.1 in Wakker (1989) imply that for every (a, x) ∈ A × X̄ such 
that (a, x) contains at least two effects, there exist array of functions {v(a,x) (·; θ) : 
R → R | θ ∈ } that constitute a jointly cardinal, continuous additive representation 

xof on B. Moreover, by the proof of Lemma 6 in Karni (2006), satisfies (A.1)– a � � � � 
(A.4) if and only if, for every (a, x) , a , x ∈ A× X̄ such that (a, x)∩ a , x = � � 
∅ and θ ∈ (a, x) ∩ a , x , there exist β((a ,x ),(a,x),θ) > 0 and α((a ,x ),(a,x),θ) 

satisfying v(a ,x ) (·, θ) = β((a ,x ),(a,x),θ)v(a,x) (·, θ) + α((a ,x ),(a,x),θ). 14 

Fix â ∈ A and define u (·, θ) = v(â,o) (·, θ) , λ (a, x; θ) = β((a,x),(â,o),θ) and 

α (a, x, θ) = α((a,x),(â,o),θ) for all a ∈ A, x ∈ X̄ , and θ ∈ �. For every given 
x(a, x) ∈ A × X̄ , w (a, b, x) represents on B. Hencea 

� 
w (a, b, x) = H (λ (a, x, θ) u (b (θ) ; θ) + α (a, x, θ)) , a, x , (6) 

θ∈ 

where H is a continuous, increasing function. 
X̄ 

Consider next the restriction of to (A × Bcu) . 

|X̄ |Lemma 6 There exist a function U : A × Bcu → R, ξ ∈ R++ and   ∈ R
|X̄ | such � �¯ ∈ A × Bcu × ¯that, for all a, b, x X , 

� � � �¯ ¯ w a, b, x = ξ (x) U b, a +  (x) . (7) 

14 By definition, for all (a, x) and θ , β((a,x),(a,x),θ) = 1 and  α((a,x),(a,x),θ) = 0. 
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137 A theory of Bayesian decision making 

Proof Let I, I , I , I ∈ I, a, a , a , a ∈ A and b̄ be as in Definition 2. Then, � � � � � � � � � � 
for all x, x ∈ X̄ , I−x a, b̄   I−x a , b̄ , I−x a , b̄   I−x a , b̄ , I−x a, b̄   � � � � � � � �¯ ¯ ¯ ¯I−x a , b and I−x a , b   I−x a , b . By the representation (5), I−x a, b   � �¯I−x a , b implies that 

� � � � � � � � � �¯ ¯ 
y∈X̄ −{x} y∈X̄−{x} 

w aI (y), bI (y), y +w a, b, x = w aI (y), bI (y), y +w a , b, x . 

(8) 

� � � � 
Similarly, I−x a , b̄   I−x a , b̄ implies that 

� � � � � � � � � �¯ ¯ 
y∈X̄ −{x} y∈X̄−{x} 

w aI(y), bI(y), y +w a , b, x = w aI (y), bI (y), y +w a , b, x , 

(9) 

� � � �¯ ¯I−x a, b   I−x a , b implies that 

� � � � �¯ w aI (y), bI (y), y + w a, b, x 

y∈X̄ −{x } 
� � � � �¯ 

y∈X̄ −{x } 
= w aI (y), bI (y), y + w a , b, x , (10) 

� � � �¯ ¯and I−x a , b   I−x a , b implies that 

� � � � �¯ 
y∈X̄ −{x } 

w aI (y), bI (y), y +w a , b, x 

� � � � �¯ 
y∈X̄−{x } 

= w aI (y), bI (y), y +w a , b, x . (11) 

But (8) and (9) imply that 

� � � � � � � �¯ ¯ w a, b, x − w a , b̄ , x = w a , b, x − w a , b̄ , x . (12) 

and (10) and (11) imply that 

� � � � � � � �¯ ¯ ¯ ¯ w a, b, x − w a , b, x = w a , b, x − w a , b, x . (13) 

� � � �¯ ¯Define a function φ(x,x ,b̄) as follows: w ·, b, x = φ(x,x , ̄ ◦ w ·, b, x . Axiomb) 
¯(A.7) with b̄ = b imply that it is monotonic increasing. Then φ(x,x ,b̄) is continuous. 

Moreover, (12) and (13) in conjunction with Lemma 4.4 in Wakker (1987) imply that 
φ(x,x ,b̄) is affine. 
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138 E. Karni 

Let β(x,o,b̄) > 0 and δ(x,o, ̄  denote, respectively, the multiplicative and additive b) 
coefficients corresponding to φ(x,o,b̄), where the inequality follows from the mono-

� � � �¯ ¯tonicity of φ(x,o,b̄). Observe that, by (A.6), I−o a, b   I−o a , b if and only if 
� � � �¯ ¯I−o a, b   I−o a , b . Hence 

� � � � �� � � � � ��¯ β(x,o,b̄) w a, b̄ , o − w a , b, o = β(x,o,b̄ ) w a, b̄ , o − w a , b̄ , o (14) 

∈ Bcufor all b̄ , b̄ . Thus, for all x ∈ X̄ and b̄ , b̄ ∈ Bcu, β(x,o,b̄) = β(x,o,b̄ ) := 
ξ (x) > 0. � � � � � �¯Let a, a ∈ A and b̄ , b̄ ∈ Bcu satisfy a, b  o a , b̄ . By axiom (A.7) a, b̄  o 
� � � � � � 
a , b̄ if and only if a, b̄  o a , b̄ . By the representation this equivalence implies 

that 

� � � �¯ ¯ w a, b, o = w a , b , o . (15) 

if and only if, 

� � � �¯ ¯ξ (x) w a, b, o + δ(x,o,b̄) = ξ (x) w a , b , o + δ(x,o,b̄ ). (16) 

Thus δ(x,o, ̄ ¯b) = δ(x,o,b ). 
By this argument and continuity (A.2) the conclusion can be extended to Bcu . Let 

b ∈ Bcuδ(x,o,b̄) :=  (x) for all ¯ . 
� � � � 

b ∈ Bcu ¯ ¯For every given ¯ and all a ∈ A, define U b, a = w a, b, o . Then, for 
all x ∈ X , ¯ 

� � � �¯ ¯ w a, b, x = ξ (x)U b, a +  (x) , ξ (x) > 0. (17) 

This completes the proof of Lemma 6. 

¯ ¯Equations (6) and (7) imply  that  for every  x ∈ X , b ∈ Bcu and a ∈ A, 

� � � � �¯ ¯ξ (x)U b, a +  (x) = H λ (a, x, θ) u b (θ) , θ  + α̂ (a, x) , a, x . (18) 
θ∈ 

� � � �¯ ¯Lemma 7 The identity (18) holds if and only if u b (θ) , θ  = u b for all θ ∈ �, 
� λ(a,x,θ) α(ˆ a,x)= ϕ (a), = v (a) for all a ∈ A,θ∈ ξ(x) ξ(x) 

� � � � � � �¯ ¯H λ (a, x, θ) u b (θ) , θ  +α̂ (a, x) , a, x =ξ (x) u b +v (a) + (x), 
θ∈ 

(19) 
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139 A theory of Bayesian decision making 

and there is κ (a) > 0 such that 

� λ (a, x, θ) � � ˆ � �α (a, x)¯ ¯ κ (a) u b (θ) , θ  + = U b, a . (20) 
ξ (x) ξ (x)

θ∈ 

� � � � � λ(a,x,θ)¯ ¯Proof (Sufficiency) Let u b (θ) , θ  := u b for all θ ∈ �, := ϕ (a)θ∈ ξ(x)
and c (a) := κ (a) ϕ (a) for all a ∈ A and suppose that (20) holds. 

b̄ ∈ BcuBut axiom (A.6) and the representation imply that, for all b̄ , , 

� � � � � � � �¯ ¯ c (a) u b + v (a) = c a u b + v a 

if and only if 

� � � � � � � �¯ ¯ c (a) u b + v (a) = c a u b + v a . 

� � 
Hence c (a) = c a = c for all a, a ∈ A. 

Normalize u so that c = 1. Then Eq. (18) follows from Eqs. (19) and (20). 
(Necessity) Multiply and divide the first argument of H by ξ (x) > 0. Equation (18) 

may be written as follows: 

� 
� � 

ξ (x)U b̄, a +  (x)= H ξ (x) 
� 

θ∈ 

λ (a, x, θ) � � α̂ (a, x) 
u b̄ (θ) , θ  + 

ξ (x) ξ (x) 
, a, x . 

(21) 

� � � � �¯ λ(a,x,θ) ¯ α̂ (a,x)Define V a, b, x = u b (θ) , θ  + then, for every given θ∈ ξ(x) ξ(x) 

b̄ ∈ Bcu(a, x) ∈ A × X and all b̄ , , 

� � � � � � � � � � �¯ ¯ ¯U b , a −U b, a = H ξ x V a, b , x , a, x 
� � � � � �� � �¯−H ξ x V a, b, x , a, x /ξ x . (22) 

Hence H (·, a, x) is a linear function whose intercept is  (x) and the slope 

� � � � �� � � � � ��¯ ¯ ¯ ¯U b , a − U b, a / V a, b , x − V a, b, x := κ (a) , 

is independent of x . Thus 

� 
� � � λ (a, x, θ) � � α̂ (a, x)¯ ¯ξ (x)U b, a + (x)=κ (a) ξ (x) u b (θ) , θ  + + (x). 

ξ (x) ξ (x)
θ∈ 

(23) 

Hence 

� � � λ (a, x, θ) � � α̂ (a, x)¯ ¯U b, a /κ (a) = u b (θ) , θ  + (24)
ξ (x) ξ (x)

θ∈ 
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140 E. Karni 

x x ¯is independent of x . However, because =� for all a and some x, x ∈ X , in gen-a a 
eral, λ (a, x, θ) /ξ (x) is not independent of θ.  Moreover, because α̂ (a, x) /ξ (x) is 
independent of b, the first term on the right-hand side of (24) must be independent of x . � � �¯For this to be true  u b (θ) , θ  must be independent of θ and λ (a, x, θ) /ξ (x) :=θ∈ 
ϕ (a) be independent of x . Moreover, because the first term on the right-hand side of 
(24) is independent of x, α̂ (a, x) /ξ (x) must also be independent of x . Finally, by 
definition, b the unique element in its equivalence class that has the property that¯ 

� �¯ u b (θ) , θ  is independent of θ . � � � � � �¯ ¯ ¯Definev (a) := α̂ (a, x) /ξ (x), u b (θ) , θ  = u b , for all θ ∈ �, andU b, a = � �¯ u b + v (a) and κ (a) ϕ (a) = 1. Thus 

� � � λ (a, x, θ) � � α̂ (a, x)¯ ¯U b, a = κ (a) u b (θ) ; θ + . (25)
ξ (x) ξ (x)

θ∈ 

This completes the proof of Lemma 7. 

Note that 

� � � λ (a, x, θ) � � α̂ (a, x) � � 
U b̄ , a = u b̄ (θ) ; θ + = u b̄ + v (a) . (26)

ξ (x) ϕ (a) ξ (x)
θ∈ 

� 
But, by Lemma 7, λ (a, x, θ) = ξ (x) ϕ (a) . Hence, by the inclusivity of Bcu ,θ∈ 
the representation (5) is equivalent to 

� � � � � 
� � λ aI (x), x, θ  � � α̂ aI (x), x 

I → � � �u bI (x) (θ) ; θ + . (27) 
λ aI (x), x, θ  ξ (x)θ∈ x∈X̄ θ∈ 

For all x ∈ X, a ∈ A and θ ∈ �, define the joint subjective probability distribution 
on × X by¯ 

λ (a, x, θ)
π (x, θ  | a) = � � . (28)

λ (a, x , θ  )x ∈X̄ θ ∈ 

� ¯Since λ (a, x, θ) = ξ (x) ϕ (a), for all x ∈ X ,θ∈ 

� ξ (x) ϕ (a) ξ (x)
π (x, θ  | a) = � = � . (29) 

x ∈ ¯ x ∈ ¯X ξ (x ) ϕ (a) X ξ (x )
θ∈ 

¯Define the subjective probability of x ∈ X as follows: 

ξ (x)
μ (x) = � . (30) 

x ∈X̄ ξ (x ) 

Then the subjective probability of x is given by the marginal distribution on X induced 
by the joint distributions π (·, · |  a) on X × and is independent of a. 
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141 A theory of Bayesian decision making 

For all θ ∈ �, define the subjective posterior and prior probability of θ,  respec-
tively, by 

π (x, θ  | a) λ (a, x, θ)
π (θ | x, a) = = � (31)

μ (x) λ (a, x, θ)θ∈ 

and 

λ (a, o, θ) 
π (θ | o, a) = � . (32)

λ (a, o, θ) θ∈ 

Substitute in (27) to obtain the representation (3), 

� 
� � � � � � � � 

I → μ (x) π θ | x, aI (x) u bI (x) (θ) , θ  + v aI (x) . (33) 
x∈X̄ θ∈ 

� � 
Let a ∈ A, I ∈ I and b, b ∈ B, satisfy I−o (a, b)   I−o a, b . Then, by (33), 

� � � � 
π (θ | o, a) u (b (θ) , θ) = π (θ | o, a) u b (θ) , θ  (34) 

θ∈ θ∈ 

and, by axiom (A.5) and (33) 

� μ (x) � � μ (x) � � � 
π (θ | x, a) u (b (θ) , θ)= π (θ | x, a) u b (θ) , θ  . 

1−μ (0) 1−μ (0)
x∈X θ∈ x∈X θ∈ 

(35) 

Thus 
� 

� � � �� � μ (x) 
u (b (θ) , θ) − u b (θ) , θ  π (θ | o, a)− π (θ | x, a) =0. 

1 − μ (0)
θ∈ x∈X 

(36) 

� 
This implies that π(θ | o, a) = x∈X μ(x)π(θ | x, a)/[1 − μ(0)]. � 

(If π(θ | o, a) >  x∈X μ(x)π(θ | x, a)/[1 − μ(0)] for some θ and μ(o)π(θ |
� ˆ 

b̂(θ) > b(θ) and b̂(θ)ˆ = b(θ)ˆ for all θ̂ ∈ − {θ}, b̂ (θ ) >  b (θ ) and b̂ (θ)ˆ = b (θ)ˆ 
for all θ̂ ∈ − {θ } and I−o(a, b)   I−o(a, b ). Then 

o, a) <  x∈X μ(x)π(θ | x, a)/[1 − μ(0)] for some θ , let b̂, b ∈ B be such that 

ˆ ˆ 
� � �� � � μ (x)ˆ ˆ 

1 − μ (0) 
u b (θ) , θ  − u b (θ) , θ  π (θ | o, a)− π (θ | x, a) >0. 

θ∈ x∈X 

(37) 

But this contradicts (A.5).) 
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(a.i i) ⇒ (a.i) . The necessity of (A.1), (A.2) and (A.3) follows from Theo-� � 
rem 1. To see the necessity of (A.4), suppose that I−x (a, b−θr) I−x a, b−θr , � � � � � � � � 
I−x a, b−θr I−x a, b−θr , and I−x a , b−θr I−x a , b−θr . By 
representation (6 ) 

� � � � � � � 
λ a, x, θ  u b θ , θ  + λ (a, x, θ) u (r, θ) 

θ ∈ −{θ} 
� � � � � � � � � ≥ λ a, x, θ  u b θ , θ  + λ (a, x, θ) u r , θ  , (38) 

θ ∈ −{θ} 
� � � � � � � � � 

λ a, x, θ  u b θ , θ  + λ (a, x, θ) u r , θ  
θ ∈ −{θ} 

� � � � � � � � � ≥ λ a, x, θ  u b θ , θ  + λ (a, x, θ) u r , θ  , (39) 
θ ∈ −{θ} 

and 

� � � � � � � � � � � 
λ a , x , θ  u b θ , θ  + λ a , x , θ  u r , θ  

θ ∈ −{θ} 
� � � � � � � � � ≥ λ a , x , θ  u b θ , θ  + λ a , x , θ  u (r, θ). (40) 

θ ∈ −{θ} 

But (38) and (39) imply that 

� � � � � � � � � � �� � 
� � � � θ ∈ −{θ} λ a, x, θ  u b θ , θ  − u b θ , θ  

u r , θ  − u r , θ  ≥ 
λ (a, x, θ) 

� � ≥ u r , θ  − u (r, θ) . (41) 

Inequality (40) implies 

� � � � � � � � � � �� � 
� � θ ∈ −{θ} λ a , x , θ  u b θ , θ  −u b θ , θ  

u r , θ  −u (r, θ)≥ . 
λ (a , x , θ) 

(42) 

But (41) and (42) imply that 

� � � � � � � � � � �� � 
� � � � θ ∈ −{θ} λ a , x , θ  u b θ , θ  −u b θ , θ  

u r , θ  − u r , θ  ≥ . 
λ (a , x , θ) 

(43) 
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143 A theory of Bayesian decision making 

Hence 
� � � � � � � � � � � �� 

λ a , x , θ  u b θ , θ  − u b θ , θ  
θ ∈ −{θ}

� � � � � � �� + λ a , x , θ  u r , θ  − u r , θ  ≥ 0. (44) 

� � � � 
Thus, I−x a , b−θr I−x a , b−θr . � � � �¯ ¯ b ∈ BcuNext I show that if b̄ ∈ B satisfies u b (θ) , θ  = u b for all θ ∈ then ¯ . 
Suppose that representation (3) holds and let I, I , I , I ∈ I, a, a , a , a ∈ A � � � � � � � �¯and x, x ∈ X̄ , such that I−x a, b   I−x a , b̄ , I−x a , b̄   I−x a , b̄ and � � � �¯I−x a , b̄   I−x a, b . Then the representation (5) implies that 

� � � � � �¯ 
x̂∈X̄ −{x} 

w aI (x̂), bI(x̂), x̂ + μ (x) u b + v (a) 

� � � � � � ��¯ = w aI (x̂), bI (x̂), x̂ + μ (x) u b + v a (45) 
x̂∈X̄ −{x} 

� � � � � � ��¯ 
x̂∈X̄ −{x} 

w aI (x̂), bI (x̂), x̂ + μ (x) u b + v a 

� � � � � � ��¯ 
x̂∈X̄ −{x} 

= w aI (x̂), bI (x̂), x̂ + μ (x) u b + v a (46) 

and 
� � � � � � � � ��¯ w aI (x̂), bI (x̂), x̂ + μ x u b + v a 

x̂∈X̄ −{x } 
� � � � � � � �¯ 

x̂∈X̄ −{x } 
= w aI (x̂), bI (x̂), x̂ + μ x u b + v (a) . (47) 

But (45) and (46) imply that 

� � � � � � 
v (a)− v a = v a − v a . (48) 

Equality (47) implies 

� �� � 
x̂∈X̄ −{x } w aI (x̂), bI (x̂), x̂ −w aI (x̂), bI (x̂), x̂ � � =v (a)−v a . (49)

μ (x ) 

Thus 
� � � � � � � � 

w aI (x̂), bI (x̂), x̂ + u b̄ + v a = w aI (x̂), bI (x̂), x̂ 

x̂∈X̄ −{x } x̂∈X̄ −{x } 
� � � � + u b̄ + v a (50) 
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144 E. Karni 

� � � �¯ ¯ b ∈ BcuHence I−x a , b   I−x a , b and ¯ . 
To show the necessity of (A.5) let a ∈ A, I ∈ I and b, b ∈ B, by the representation � � 

I−o (a, b)   I−o a, b if and only if 

� � � � 
π (θ | o, a) u (b (θ) , θ) = π (θ | o, a) u b (θ) , θ  . (51) 

θ∈ θ∈ 

� 
But π (θ | o, a) = x∈X μ (x) π (θ | x, a) / [1 − μ (0)] . Thus (51) holds if and only 
if 

� � � � � � 
μ (x) π (θ | x, a) u (b (θ) , θ)= μ (x) π (θ | x, a) u b (θ) , θ  . 

x∈X θ∈ x∈X θ∈ 

(52) 

� � 
But (52) is valid if and only if I −o (a, b)   I −o a, b . 

� �� � � � � �� � � � �For all I and x, let K (I, x) = y∈X−{x} μ y θ∈ π θ | x, a u b θ +
I y � �� � � � � � � ¯ ¯ v a . To show the necessity of (A.6) Then I−x a, b I−x a , b if and only if 

I y 

� � � � � �¯ ¯K (I, x)+ u b + v (a) ≥ K (I , x)+ u b + v a (53) 

if and only if 

� � � � � �¯K (I, x)+ u b̄ + v (a) ≥ K (I , x)+ u b + v a (54) 

� � � �¯ ¯if and only if I−x a, b I−x a , b . � � � �¯ ¯To show that axiom (A.7) is implied, not that I−x a, b I−x a , b if and only 
if 

� � � � � �¯K (I, x)+ u b̄ + v (a) ≥ K (I, x)+ u b + v a (55) 

if and only if 

� � � � � �¯K (I, x )+ u b̄ + v (a) ≥ K (I, x )+ u b + v a (56) 

� � � �¯ ¯if and only if I−x a, b I−x a , b . This completes the proof of part (a). 
(b) Suppose, by way of negation, that there exist continuous, real-valued functions 

{ũ (·, θ) | θ ∈ } on R, ṽ ∈ RA and, for every a ∈ A, there is a joint probability 
measure π̃ (·, · |  a) on X̄ × �, distinct from those that figure in the representation (3), 
such that on I is represented by 

� 
� � � � � � � � 

I → ˜ ˜ θ | x, aI (x) u bI (x) (θ) , θ  + ˜  aI (x) ,μ (x) π ˜ v (57) 
x∈X̄ θ∈ 
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145 A theory of Bayesian decision making 

� 
where ˜ = π (x, θ  | a) for all x ∈ ¯ π (θ | x, a) = ˜  μ (x)μ (x) ˜ X , and ˜ π (x, θ  | a) / ˜θ∈ 
for all (θ, x, a) ∈ × X × A. 

Define κ (x) = μ̃ (x) /μ (x) , for all x ∈ X̄ . Then the representation (57) may be 
written as 

� 
� � � � � � � � 

I → μ (x) π θ | x, aI (x) γ θ, x, aI (x) κ (x) ũ bI (x) (θ) , θ  
x∈X̄ θ∈ 

� � + κ (x) ṽ aI (x) . (58) 

Hence, by (3), ũ (b (θ) , θ) = u (b (θ) , θ) /γ̃ (θ, x, a) κ (x) and ṽ (a) = v (a) /κ (x). 
The second equality implies that κ (x) = κ for all x ∈ X̄ . Consequently, the first 

b ∈ Bcuinequality implies that γ̃ (θ, x, a) = γ (θ) for all (x, a) ∈ X̄ × A. Thus, for ¯ , 

� � � 
� � � � u b̄ � � 

I → μ (x) π θ | x, aI (x) + v aI (x) . (59)
γ (θ) 

x∈X̄ θ∈ 

� � � 
Let b̂ ∈ B be defined by u b̂ (θ) , θ  = u b̄ /γ (θ) for all θ ∈ �. Then, b̂  x b̄ 

a 

b̂ ∈ Bcufor all (x, a) ∈ X̄ × A, and, by Definition 2, . Moreover, if γ (·) is not a 
constant function then b̂ = b̄ . This contradicts the uniqueness of b̄ in Definition 2. 
Thus γ (θ) = γ for all θ ∈ �. But 

� � � � � � 
1 = π̃ θ, x | aI (x) = γ π (θ, x | a) = γ.  (60) 

x∈X̄ θ∈ x∈X̄ θ∈ 

Hence, π̃ (θ, x | a) = π (θ, x | a) for all (θ, x) ∈ × X̄ and a ∈ A. 
Next consider the uniqueness of the utility functions. The representations (3) and 

(5) imply that 

� 
� 

w (a, b, x) = μ (x) π (θ | x, a) u (b (θ) , θ)+ v (a) . (61) 
θ∈ 

Hence, by the uniqueness part of Theorem 1, {ũ (·, θ)}θ∈ and ṽ ∈ R A must satisfy 

� 
� � 

π (θ | x, a) v (b (θ) , θ)+ ṽ (a) = m π (θ | x, a) u (b (θ) , θ)+ v (a) 
θ∈ θ∈ 

+ K (x) , (62) 

where m > 0. Clearly, this is the case if ũ (·, θ) = mu (·, θ)+ k and ṽ = mv + k . 
Suppose that ũ (·, θ) = mu (·, θ)+ k, ṽ = m v+ k and, without loss of generality, � � � � 

x¯let m > m > 0. Take a, a ∈ A and b̄ , b ∈ Bcu such that a, b̄   a , b̄ . Then, 
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146 E. Karni 

by the representation (3), 

� � � � � �¯ u b̄ − u b = v (a)− v a . (63) 

But 

� � � � � � � � �� � � �� � �¯ ũ b̄ − ũ b̄ = m u b̄ − u b > m v (a)− v a = ṽ (a)− ṽ a . (64) 

Hence ũ (·, θ) and ṽ do not represent . 
Consider next ũ (·, θ) = mu (·, θ) + k (θ) , where k (·) is not a constant function. � ¯ ∈ BcuLet k̄ (x, a) = π (θ | x, a) k (θ) . Take a, a ∈ A and b̄ , b such that � � � � θ∈ � � �� 

xa, b̄   a , b̄ and k̄ (x, a)− k̄ x, a = 0 for  some  x . Then 

� � � � � � � � �� � � �� � � ��¯ ¯ ¯ ¯ ¯ ũ b − ũ b = m u b − u b + k (x, a)− k̄ x, a = m v (a)− v a 
� � = ṽ (a)− ṽ a . 

Hence ũ (·, θ) and ṽ do not represent . 
If v (˜ a) = mv (a)+ k (a) , where k (·) is not a constant function then, by a similar 

argument, ũ (·, θ) and ṽ do not represent . 

Acknowledgments I am grateful to Tsogbadral Galaabaatar, Jacques Drèze, Robert Nau and an anony-
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